SDPNAL \(+\) : a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints

نویسندگان

  • Liuqin Yang
  • Defeng Sun
  • Kim-Chuan Toh
چکیده

Abstract In this paper, we present a majorized semismooth Newton-CG augmented Lagrangian method, called SDPNAL+, for semidefinite programming (SDP) with partial or full nonnegative constraints on the matrix variable. SDPNAL+ is a much enhanced version of SDPNAL introduced by Zhao et al. (SIAM J Optim 20:1737–1765, 2010) for solving generic SDPs. SDPNAL works very efficiently for nondegenerate SDPs but may encounter numerical difficulty for degenerate ones. Here we tackle this numerical difficulty by employing a majorized semismooth NewtonCG augmented Lagrangian method coupled with a convergent 3-block alternating direction method of multipliers introduced recently by Sun et al. (SIAM J Optim, to appear). Numerical results for various large scale SDPs with or without nonnegative constraints show that the proposed method is not only fast but also robust in obtaining accurate solutions. It outperforms, by a significant margin, two other competitive publicly available first order methods based codes: (1) an alternating direction method of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Newton-CG Augmented Lagrangian Method for Semidefinite Programming

We consider a Newton-CG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive definiteness of th...

متن کامل

A first-order block-decomposition method for solving two-easy-block structured semidefinite programs

In this paper, we consider a first-order block-decomposition method for minimizing the sum of a convex differentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly, nonsmooth) functions with easily computable resolvents. The method presented contains two important ingredients from a computational point of view, namely: an adaptive choice of stepsize f...

متن کامل

A Barrier-Based Smoothing Proximal Point Algorithm for NCPs over Closed Convex Cones

We present a new barrier-based method of constructing smoothing approximations for the Euclidean projector onto closed convex cones. These smoothing approximations are used in a smoothing proximal point algorithm to solve monotone nonlinear complementarity problems (NCPs) over a convex cones via the normal map equation. The smoothing approximations allow for the solution of the smoothed normal ...

متن کامل

On the Asymptotic Superlinear Convergence of the Augmented Lagrangian Method for Semidefinite Programming with Multiple Solutions

Solving large scale convex semidefinite programming (SDP) problems has long been a challenging task numerically. Fortunately, several powerful solvers including SDPNAL, SDPNAL+ and QSDPNAL have recently been developed to solve linear and convex quadratic SDP problems to high accuracy successfully. These solvers are based on the augmented Lagrangian method (ALM) applied to the dual problems with...

متن کامل

On how to solve large-scale log-determinant optimization problems

We propose a proximal augmented Lagrangian method and a hybrid method, i.e., employing the proximal augmented Lagrangian method to generate a good initial point and then employing the Newton-CG augmented Lagrangian method to get a highly accurate solution, to solve large-scale nonlinear semidefinite programming problems whose objective functions are a sum of a convex quadratic function and a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program. Comput.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015